If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14z^2-29z+12=0
a = 14; b = -29; c = +12;
Δ = b2-4ac
Δ = -292-4·14·12
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-13}{2*14}=\frac{16}{28} =4/7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+13}{2*14}=\frac{42}{28} =1+1/2 $
| -2(y+1)=y-3+2(3y+2) | | 2/3s-5/6s=1/2=-3/2 | | 3^(3a+1)*3^a=729 | | 0.5(x+10)=15 | | -3(-9w+1)-9w=4(w-1)-6 | | 4x-2(x-3)=-7=4x=1 | | 7(v+2)=-2(8v-1)+7v | | 6a–13=-55 | | x+x+2+x+4=26 | | -5(2x+3=-55 | | -7/8+v=3/4 | | 2(x+12)=5 | | 1/3(9x+27)-4=1÷2(2×+54) | | 2x+2x^2=216 | | 8z+17=85 | | v-3/5=-1/4 | | 3x+12+4x=90 | | G(x)=100x-5 | | 3/4=y+4 | | 2x+7x-28=26 | | 10x^2=4x+4 | | 4=x+36/8 | | 1=-3x^2-6x+1 | | 14(v+4)-2v=3(4v+1)-6 | | y2+-6y+10=0 | | y2+-6y-10=0 | | 120+130+140+125+95+x=720 | | x+6/7=3/2 | | 17b+-10b−10b−-6b=1 | | 7+m+6m-3=0 | | 16x^2-21+11=0 | | -11v+13v+-9v=14 |